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Summary

Chaos is a term assigned to a class of motions in deterministic systems whose
time history has a sensitive dependence on initial conditions. Such phenomenon has
previously been shown to exhibit in ocean acoustics’ ray tracing, and thus called “ray
chaos” by the ocean acoustics community. Since 1995, we have made further
investigations on the ray chaos, as a basic research project sponsored by the Office of
Naval Research (Grant No. N00014-95-10443). The results of these investigations are

presented in this report.

Two topics are addressed. The first is the chaos in three-dimensional (3-D) ray
tracing. All of the previous studies have a common shortcoming: They all used two-
dimensional (2-D) ray equations. The 2-D equations are not valid for long-range
transmissions, while chaos is well known as a long-range problem. This means that the
2-D equations may lose validity before chaos is manifest. To overcome this shortcoming,
we use the 3-D equations. We also use measured sound speed data for our study to be
more realistic. First, we study the chaos in Heard-to-Ascension (HA) propagation, and
then California-to-Hawaii (CH) propagation. Chaos appeared in both cases. Loss of
predictability occurred in HA case. However, CH problem was predicted with high
accuracy even in the presence of chaos. Comparison between the HA and the CH case
leads to a hypothesis on overcoming ray chaos. The signature of chaos in the received

signals at Ascension Island is discussed.
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The second topic we address in this report is the chaos in double-channel
propagation. First we use the 2-D equations and a double-channel model to study the
effects of internal waves on chaos. Then we use the 3-D ray equations and measured
sound speed data to conduct a further investigation. Numerical results show that chaos in
a double-channel is likely to be induced by internal waves. In addition, much larger
chaoticity was observed when the measured sound speed data were used. This suggests
that in a real ocean environment the double-channel chaos might have larger chaoticity

than that in our model experiments.

iii



Table of Contents
SUMMARY ...ccuutiirmmeceirenneerennseressnscssessnsesssssnsessnnnns cessessrsenses ecnecstesasennne ceseenres vevessasane I
L INTRODUCTION 2
A SCIENTIFIC BACKGROUND -..cx.vssscussasumsunssssssssssssssseesesssssesssssesssssssssesseseseseeseeessssessessesssssmsmmmsesmnenssese e 2
B. ABOUT THIS REPORT w.......cvverrevssssssusmsmsmnsnssssenenessessesssesssssssmsassasssnsnsessssessesssssssssssmmmssssesssossseseeeeosenesosr 3
II. CHAOS IN 3-D RAY TRACING 2
A. HEARD ISLAND TO ASCENSION ISLAND SOUND PROPAGATION.....c.ceuirerrerrerermsussesessereenssesssnsssosssssesesesmsns 6
1. PTODIEI SIQEMENL ............ooooooo e 6
2o MRIROMS ..o ee oo 7
a) New 3-D ray equations..................... .
b) Numerical calculations.. et ae e resens .
©) DIgROSIS Of CHA0S ...cvvverseiiinncessssisns s ssseessessssssssssss s sssssessseseeseesesese e
3. NUMEPICAI TESUILS......ovcoovvvvvoosrrrvee oo e oo 14
a) Extremely sensitive dependence on initial conditions .... ettt a et ates 14
b) POSItiVe LyBpUIOV EXPONENLS.......vvvvroececsvevercessssessssesessssssssssssesssosesesseessssssssssseesessessoseseesesosoooss 15
©) Loss of predictability .........uueeecevecenceeneeeeeesseeses oo ....16
B CONCIUSIONS ..o oo oo oo eseeeeeeeoe 20
B. CALIFORNIA TO HAWAT SOUND PROPAGATION ....uoviurrrrernsnrisceseeseressessnssnanseseressssesssnssesssesssenseessnsssses 20
1. GEOPRYSICAL SEHINGS ...t 20
2. NUMEFICAL QY FACING......ovvoroeeereee oo oo oo 21
3. ChaoS QNA PYEGICABIliLY ....................cooveeeeceeriisireeseseseeeeeeeeeeeeeeeeeeeeeeeee oo 24
B CONCIUSIONS ..o eoeeeeeeeo oo 24
C. OVERCOMING RAY CHAOS: A HYPOTHESIS et s s e eaese s et et e b antse s nneeesannnnseennsnenn saas 25
D. ON PREDICTABILITY HORIZON. ...vvvtuummssssscsessnrenseseessssssssssssssssssessesssseseseesssessessessesssssmsmmesssssssseeeeeeoeesoere 26
HI. CHAOS IN DOUBLE-CHANNEL PROPAGATION 29
A. AN INVESTIGATION USING 2-D MODEL...ouvcccevveuunmrsssssmenesesssesnseneeeessssssessssmmsesessessseseseeesessesesses e 29
1o 2-DMOMEL ... oo 29
2. Numerical CICULAHIONS...................couewewuoreereooeeeeereseeeeeeeeeeeeeeeeee s 31
3. RESUILS ..., ettt et e e et a e e e e e et e e s e e e e e s 32
B. FURTHER STUDY USING 3-D MODEL WITH MEASURED SOUND SPEED DATA. . ...vvooovooooeoooooooooooooooo 33
L RAY IPACING ..o oo eeeoeee e 33
2. NUMEPICAL FESUILS ... oo eseeeeooeo 34
IV. DISCUSSIONS: ON THE SIGNATURE OF CHAOS IN ACOUSTIC MEASURMENTS............ 36
V. APPENDIX 1: DERIVATION OF RANGE EQUATION 38
VI. APPENDIX 2: PARAMETERS OF HEARD-TO-ASCENSION RAYS 39
VIL. APPENDIX 3: LYAPUNOV EXPONENT DOES NOT QUANTIFY PREDICTABILITY.......... 47
REFERENCES ..ouuutiiiiiiiiiininiiiiiniininiiiiietstenssssneeeeesssseseeesssssssesesesssnnnsessossmmmmnnsssnns 51
FIGURES ...uutiiiiiiiiiiitiitiiinneeeeniiecccesseeaeeesesnnneessesssesssesessssnnnesssessnnssnnsssnnmnne o, 54




l INTRODUCTION

A. Scientific background

Chaos is a term assigned to a class of motions in deterministic systems whose
time history has a sensitive dependence on initial conditions'. In ocean acoustics, Palmer
et al. *have shown that acoustic ray paths in a weakly range-dependent deterministic
ocean model exhibit such chaotic behavior. This implies that even if the sound speed
structure were known with infinite precision, a limitation is imposed on one’s ability to
make deterministic predictions using ray theory, because small errors in initial conditions
(source depth and launch angle) grow exponentially in range. The Palmer ef al.’s
pioneering work created a new field of ocean acoustics: Acoustic ray chaos. Further
studies in this field have been conducted by Abdullaev and Zaslavskii®, Tappert et al.’,

Brown et al.’ ’6, Smith et al.7’8, Yan9, Collins and Kupermanw, and Tappert and Tang“.

These previous studies have provided some new insights. However, all of the
previous studies have a common shortcoming: They all have used two-dimensional (2-D)
ray equations. The 2-D equations apply only to short range transmissions, while chaos is
well known as a long-range problem. This implies that the ray equations may lose
validity before chaos is manifest. Hence, some conclusions of the previous studies might
be controversy. To conduct a more realistic investigation, we started a research project
sponsored by The Office of Naval Research (Grant No. N00014-95-10443). The project
started on February 1, 1995, and ended on January 30, 1997. The results of this

investigation are presented in this report.




B. About this report

Two studies are made in this report. The first is the study of ray chaos using a
newly developed three-dimensional (3-D) ray equations'>. As mentioned above, all of the
previous studies have a common shortcoming: The ray equations used in the studies are
two-dimensional (2-D) equations. These equations are valid for at moét 100 km range,
but they were integrated to thousands of kilometers (far beyond their range limitation) to
construct Poincare sections and estimate Lyapunov exponents. This leads to some
unreasonable result. For example, a predictability horizon of 1000 to 2000 km has been
estimated in reference 8 using Lyapunov exponents, but the ray equations used in that
work are only valid for about 100 km. This suggests that the predictability of ray
acoustics is determined by ray equations, rather than the chaos. Hence, that predictability
horizon is to be questioned. To overcome the shortcoming of the previous studies, we
use the 3-D ray equations in this project, as well as measured sound speed data rather than

models. These two improvements allow our study to be more realistic.

The second topic we address in this report is the chaos in double-channel
propagation. In the previous work, Yan’, one of us, has discovered that in an oceanic
double-channel, sound propagation is more likely to exhibit chaotic behavior. This
phenomenon is further investigated in this project, by using a measured sound speed data

base and taking into account the earth curvature in ray tracing.




The remainder of this report is organized as follows. In section II, we study the
ray chaos using the 3-D ray equations and measured sound speed data. Two propagation
problems are studied. The first is the Heard Island to Ascension Island sound
transmission, which is a part of the Heard Island F easibility Test (HIFT) conducted in
January 1991. The second is the California to Hawaii sound transmission, which is a part
of the project of Acoustic Thermometry of Ocean Climate (ATOC). The first problem
(with propagation range of 9200 km) is very difficult to predict due to chaos. The second
problem (with propagation range of 3300 km), however, is predicted with very high
precision even in the presence of chaos. Comparison between the two cases leads to a
hypothesis in overcoming ray chaos. Predictability of ray acoustics is also discussed in
this section. In section III, we study the chaos of underwater sound in double-channel
propagation. First, we use two-dimensional ray equations and a double-channel model to
perform numerical simulations. Further investigations are then carried out by using three-
dimensional ray equations and measured sound speed data. Chaos is shown to exhibit in
double-channel propagation. Section IV deals with the discussions on the signature of
chaos in acoustic measurements. A concluding remark is presented in Section V. There
are also three appendixes, i.e., Sections VI, VII, and VIII, concerning, respectively, the
derivation of the range equation used in 3-D ray tracing, more numerical results, and
finally, an article entitled “Lyapunov exponent does not quantify predictability.” This
article shows that Lyapunov exponent cannot be used to quantify the predictability

horizon while it has been used by the ocean acoustics community.




II. CHAOS IN 3-D RAY TRACING

In the previous studies, >*'" used are 2-D ray equations, which are valid only for
short range transmissions. Since chaos is well known as a long-range problem, why don’t
we use long-range ray equations to study the ray chaos? Currently, there are two sets of
long-range ray equations we can use. The first is Munk et al.’s'® horizontal ray equations,
constructing ray path on the latitude-longitude plane. The second is our new 3-D ray
equations'” that construct a ray path in the dimensions of latitude, longitude and ocean
depth. Both take into account the curvature of an ellipsoid earth and 3-D refraction, so
that they do not have range limitation. We have already applied the Munk et al.’s
equations to the study of chaos in horizontal ray tracing, and presented the results in a

previous paper.'* In this section, we present the results of chaos in 3-D ray tracing.

Two propagation problems are studied here. The first is the Heard Island to
Ascension Island sound propagation, and the second is t.he California to Hawaii
propagation. The first problem is very difficult to predicf due to chaos. However, the
second problem is predicted with high precision in the presence of chaos. Predictability

of ray acoustics is discussed.




A. Heard Island to Ascension Island sound propagation

1. Problem statement

During January 1991, the Heard Island Feasibility Test (HIFT) was carried out to
determine the feasibility of acoustically measuring the rate of ocean warming.
Underwater acoustic signals were transmitted from a ship in the southern Indian Ocean
and monitored at listening stations throughout the world'>*'®, This experiment provides
us with a good'opportunity to study the ray chaos, considering that the propagation paths
in this case are long enough for the ray chaos to exhibit. In this section, we perform 3-D
ray tracing for the sound propagation from Heard Island to Ascension Island to

investigate if ray chaos exists in this case.

For our investigation to be as realistic as possible, we use the 3-D ray equations '
that do not have range limitation. In addition, we use a measured sound speed data base
provided by the National Oceanographic Data Center (NODC). The data are for the
seasonal period, December through March. This seasonal period covers that during

which HIFT was performed.

“Ascension Island (7°57°S, 14°24°W) is located in the Atlantic Ocean. From the
source ship (53°33°8S, 74°30’E) to Ascension Island, the distance along the geodesic is
approximately 9200 km'’, about one quarter of the distance around the earth. Table 1

shows the parameters of the source and the receiver used in this calculation. The




receiver’s parameters in Table 1 are those of the hydrophone 23 that is located south of

the Ascension Island V.

Table 1 Parameters of source and receiver
Source Receiver
Latitude (Deg) 53°22°’S 8°4.2°S
Longitude (Deg) 74°30°E 14°25.2°W
Depth (km) 0.175 0.832
2. Methods

a) New 3-D ray equations

As mentioned in the first section, a common shortcoming of previous studies is

the use of 2-D ray equations that apply only to short range transmissions while chaos is a

long-range problem. To overcome this shortcoming, we use the new 3-D ray equations

that do not have range limitation. The new 3-D ray equations we 2 have previously

derived are
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are the radius of curvature and the radius of curvature in prime vertical, respectively'®.

In Egs. (1) through (7), ¢is geographic latitude; A is longitude, east of Greenwich being
positive; 7 is ocean depth, downward positive; « is azimuth, measured clockwise from
north; @ is grazing angle; a is the semimajor radius of the reference ellipsoid; and e is the
eccentricity of the ellipsoid. These ray equations account for the curvature of an ellipsoid

earth and 3-D refraction, and thus, should not have range limitation. Apart from these ray




equations we have previously derived, we also use the following equations to compute

travel time

a 1

“ = 8

d C ®
and the propagation range

2 2

dR

——:cose\/( £ cosa) +( v sina) 9

ds H=r v—r

The derivation of equation (9) is presented in Appendix 1.

b) Numerical calculations

Before ray tracing, we sort the NODC sound speed data sets into numerical orders
of latitude and longitude, respectively. Meanwhile, we index each data set. The straight
insertion method' is used for sorting the data. The index of a data set is to be used for
finding a particular sound speed data set during the 3-D sound speed interpolation as

described in the following paragraph.

We integrate the ray equations (1) through (5) using the fourth-order Runger-

Kutta method with adaptive step size control.” The calculation accuracy is controlled by

specifying a maximum fractional error (10~ ) in any single integration step. For a given



location (¢o,Ao,r0), the sound speed is estimated through the interpolation of the pre-
sorted NODC 3-D sound speed data base. In the 3-D interpolation, we first find the grid
square in which the point (go,A0) falls. Then we find the sound speed data sets on the grid
square through the index we give to each data set during the sorting process described in
the previous paragraph. We estimate the sound speed at depth o for the grid points using
Cubic Spline method.” Finally we obtain the sound speed at (¢0,40,r0) by performing

Bilinear Interpolation® on the ¢pA-plane.

The following method is used to find eigenrays -- rays connecting the source and
the receiver. First, we search for the launch azimuth with which the ray passes within a
given error tolerance for both the latitude and the longitude of the receiver. Successive
Shooting method?® is used for the searching process. Then we adjust launch grazing
angle and again the launch azimuth through trial-and-error to continue searching. A ray is
determined as an eigenray, if it passes within given error tolerances of the receiver’s
coordinates (¢,Ar,7r). This is a very difficult task due to ray chaos, as will be described in

Section A 3.

c) Diagnosis of chaos

Two methods are used to diagnose chaos. The first is the Lyapunov exponent

method. The ith one-dimensional Lyapunov exponent is defined as 2!
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1. pl)
A =lim-log, —/—=, 10
l & pi(O) ( )

too f

where p is the length of the ellipsoidal principle axis, and A: are ordered from the largest

to the smallest. Lyapunov exponents are the average exponential rates of divergence or

convergence of nearby orbits in the phase space. Any system containing at least one
positive Lyapunov exponent is defined to be chaotic. To estimate the Lyapunov
exponents, Wolf et al.’s * method is used, and their published FORTRAN code is

adapted for this calculation.

For calculating p,(¢), we use the following variational equations:
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These variational equations are derived from ray equations (1) through (5). They are
numerically integrated along with the integration of the ray equations to estimate

Lyapunov exponents.

The second method we use to identify chaos is the Power Spectrum Method. We
compute the power spectra for each ray path, by using the Fast Fourier Transformation

(FFT) " to analyze vertical path data. A chaotic ray path is characterized by broadband,

13




noisy spectra. The Power Spectra are used together with the Lyapunov exponents to give

a conclusive assessment as to whether a ray is chaotic.

3. Numerical results

a) Extremely sensitive dependence on initial
“conditions

Fig. 1 shows two vertical ray paths between Heard Island and Ascension Island.
The upper is an eigenray, which is launched with an azimuth of 266.7258936017752°,
and a grazing angle of 0.5000000000000000°; and the lower is the vertical ray path
launched with the same azimuth, but a slightly different grazing angle
(0.5000000050000000°). By comparing the two ray paths, we can see clearly that a very
small difference (0.00000005°) between the launch grazing angles caused substantial
change in ray path. This phenomenon -- extremely sensitive dependence on initial

conditions -- is just a characteristic of chaos.

The small perturbation to the launch grazing angle not only caused the substantial
change in the ray path, but also dramatically changed the ray parameters. This can be
seen in Table 2. From this Table we can see that when the small perturbation is imposed
to the launch grazing angle, the ray constructed is no longer an eigenray. At the
receiver’s longitude, the difference in ending longitude is almost 1 degree, and the
propagation range is reduced to 9155 km. The latter caused substantial change in travel

time.

14




Table 2 Comparison of ray parameters (The ending latitude is -8.069997° in both

cases. The launch angles are given in Fig. 1.)

Parameters at the receiver  Eigenray 1 The perturbed ray Differences
Longitude (Deg) -14.420752040715  -13.4235716603278  -0.9972
Depth (km) 0.83525 0.57177 0.26348
Travel time (Sec) 6258.132 6211.618 46.514
Range (km) | 9222.607 9155.850 66.757

b) | Positive Lyapunov exponents

We have justlshown that the 3-D ray paths we have constructed are extremely
sensitive to initial conditions. This phenomenon is the characteristics of chaos. Fig. 2
shows the Lyapunov exponents of the ray in Fig. 1. We can see clearly from Fig. 2 that
this ray has positive Lyapunov exponents, suggesting chaos. This is consistent with its
behavior of sensitive dependence on initial conditions as shown in F 1g 1. Figure 2 is
only a typical result. In fact, we have estimated Lyapunov exponents for all the rays
computed in this project. As a matter of fact, all of the rays have pdsitive Lyapunov

exponents, indicating chaos.

15




c) Loss of predictability

The presence of the chaos caused the loss of predictability. This can be seen in
Table 3 that gives the last eleven steps of the iteration in shooting the receiver’s longitude
(-14.42°). In this calculation, for a given launch grazing angle (-3.0°), we successively
change the launch azimuth, using bisection method, to drive the ray to the receiver’s
longitude. We can see clearly from this Table that at the 44-th step, the launch azimuth
had already been specified with 16-digit accuracy -- the maximum accuracy in
FORTRAN’s double precision. However, we still did not arrive at the receiver’s
longitude. This implies that a limitation due to the ray chaos is imposed on our ability to

make predictions. In other words, the loss of predictability occurred in this case.

Table 3 Loss of predictability

Iteration Launch Azimuth (Degree)  Ending Longitude Aend | Aend-Areceiver

Number (Degree) (Degree)
35 266.6249999999418 -14.57 0.15
36 266.6249999999709 -14.63 0.21
37 266.6249999999854 -14.65 0.23
38 266.6249999999927 -14.60 0.18
39 266.6249999999964 -14.61 0.19
40 266.6249999999982 -14.55 0.13
41 266.6249999999991 -14.64 0.22
42 266.6249999999995 -14.58 0.16
43 266.6249999999998 -14.60 0.18
44 266.6249999999999 -14.55 0.13
45 266.6249999999999 -14.05 0.37

Mentioned above are only some typical results. In fact, all of the rays computed

are chaotic according to their positive Lyapunov exponents. Due to the ray chaos, our

16



ability to predict is very limited in this case. Until now we have not found an eigenray
that satisfies the given accuracy: +0.000005° for the receiver’s latitude and longitude, and
+0.0005 km for the receiver’s depth. The best one and also the only one we have found
passes within 0.000005° of the receiver’s latitude, 0.0008° of the receiver’s longitude,
and 0.0033 km of the receiver’s depth. Its travel time (6258.132 sec) seems in good
agreement with the measurements (1 hr, 44 min, 17 sec.,) but we got this result by
chance, rather than by any conventional algorithms. Tl}iS is illustrated in Table 4. The
data in this table are taken from a shooting process, with a launch grazing angle of 0.5°
and launch azimuths between 266° and 269°. The error tolerances we set for this
calculation were within 0.000005° of both the receiver’s latitude and the receiver’s
longitude, and within 0.0005 km of the receiver’s depth. We did not get any ray that
satisfies this criterion. Instead, we list those which are closest to the receiver in Table 4.
We can see that the ray computed at the 45-th step of shooting is not better than that at the
28-th step, since the former has larger errors at the receiver. Obviously, continuing
shooting cannot improve the accuracy of prediction. Therefore, we lose predictability in

this case due to chaos.

It is interesting to discuss how accurate we can predict in this case. Table 5 lists
those rays that are closest to the receiver during a shooting process. In the calculations,
the ending longitude is obtained with an error of 0.000005 degree. We wish to get the

ending longitude with the same accuracy, but we could not. Instead, we list
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Table 4

Some rays in a shooting process

No. of Travel Range Ending Ending Error of  Error of
shooting | time (sec.) (km) Longitude Depth Longitude Depth at
(Deg) (km) at receiver receiver
15 6257.977 9222457 -14.4186  0.7903 0.0014 0.042
20 6258.247  9222.778 -14.4233  0.8953 0.0033 0.0633
28 6258.132  9222.607 -14.4208  0.8353 0.0008 0.0033
45 6258.206  9222.845 014.4243  0.8849 0.0043 0.0329
Table 5 Errors at the receiver: A typical result (launch azimuth is successfully

changed using bisection method, and launch grazing angle is fixed at 0.5 9

Travel time, Sec Range, km  Longitude, Deg. Depth, km
Ray 1 6257.977 9222.5 -14.4186 0.7903
Ray 2 6258.247 9222.8 -14.4233 0.8953
Ray 3 6258.132 9222.6 -14.4208 0.8353
Ray 4 6258.206 9222.8 -14.4243 0.8849
Prediction 6258 9223 -14.42 1
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those results that satisfies +0.005° error tolerance for the receiver’s longitude. From this

Table, we can see that at the receiver’s longitude (-8.07000°),

* the receiver’s longitude we got has an error of 0.005°, corresponding to about 500 m

error in the longitude direction;
o the travel time we got can be accurate to seconds (in this case, 6258 sec);
* the range predicted can be accurate to ten meters (in this case, 9220 km); and

e The receiver’s depth we got may only be accurate to kilometers.

Considering that the propagation range in this case is about 9220 km, the accuracy of the
travel time, the range, and the receiver’s longitude appears to be good. However, the
accuracy of the receiver’s depth, which can only be acc;xrate to kilometers, cannot be
accepted for a 3-D ray tracing. In addition, the accuracy of travel time may not meet the
needs of ocean acoustic tomography. Table 5 lists a typical result. In our calculation, the
accuracy we predicted varies with the launch grazing angle. More ray data are given in

Appendix 2.
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4. Conclusions
We have shown that in the case of the Heard-to-Ascension sound propagation,
chaos occurred in ray tracing. Due to the chaos, our ability to make deterministic

prediction is very limited in this case. Consequently, we have not gotten any eigenray

- that satisfies the given error tolerances at the receiver. The best one and also the only one

we have got passed with 0.000005° of the receiver’s latitude, 0.0008° of the receiver’s
longitude, and 0.033 km of the receiver’s depth. Its travel time (6258.132 seconds) seems
in good agreement with the measurements (1 hr, 44 min, 17 sec.,) but we got this result

by chance rather than using any conventional algorithms.

B. California to Hawaii sound propagation

We have just shown that in the case of the Heard-to-Ascension sound
propagation, predictability is very limited due to chaos. Now we present a very different
result: In the presence of chaos, we predict with very high precision for a 3300 km sound

propagation problem — the California to Hawaii sound propagation.

1. Geophysical settings

As part of the Acoustic Thermometry of Ocean Climate (ATOC) program, an
Acoustic Engineering Test (AET) was conducted during November 1994. Broad band

acoustic data were obtained at about 3,300 km (from California to Hawaii) and 10,000
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km (from California to New Zealand). Here we study the California-Hawaii sound
propagation. The broad band ATOC source was located at about 300 nm of San Diego,
California, near Jasper Seamount (31.03416667°N, 123.5903333°W,) and the receiver
was placed at 20.65066666°N and -154.0773333°W, near Hawaii.”> The source location

and the receiver’s location are given in Table 6.

Table 6 Parameters of source and receiver for California-to-Hawaii ray tracing

Source Receiver
Latitude (Degree) 31.03416667° 20.65066666°
Longitude (Degree) -123.5903333° -154.0773333°
Depth (km) 0.650 1.2696
2. Numerical ray tracing

We still use the ray equations (1) through (5) to construct ray paths. The
numerical methods and the computer codes are the same as those that used for the Heard-
to-Ascension sound propagation described in Section A2. Different from the Heard-to-
Ascension ray trécing, however, is that we now use Levitus sound speed data base, rather
than the NODC sound speed data. The Levitus sound speed data base is provided by the
ATOC group at the Scripps Institution of Ocear;ography, University of California at San
Diego. Compared with the NODC data, the Levitus data are smoother in horizontal

direction.
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Before searching for eigenrays, we determine the maximum fractional error for

the Runge-Kutta method. This is done by specifying different values of the maximum

fractional error in any single integration step. The results are presented in Table 7.

Table 7 Dependence of ray parameters on the maximum fractional error (Eps)

specified in Runge-Kutta code..

Eps Ending ¢ Ending A Ending r Travel time  Range (km)
(Degree) (Degree) (km) (sec)

1D-4  20.344388 -154.077338 0.5782 2206.673 3267.881

ID-5 20.344383 -154.077338 0.5646 2206.673 3267.881

ID-6  20.344387 -154.077338 0.5674 2206.673 3267.881

ID-7  20.344393 -154.077331 0.5675 2206.673 3267.880

1D-8  20.344390 -154.077334 0.5675 2206.673 3267.880

We can see from this table that when it is less than 1D-6, the Eps significantly

affects the accuracy of the ray parameters. This is due to the rounding-off errors in the

numerical calculations. To avoid this rounding error effect, we choose Eps=1D-6 in the
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following calculations. We still use the successive shooting method described in section

1 to find eigenrays. Table 8 lists nine eigenrays.

Table 8 Eigenray parameters and Lyapunov exponents

No.of  Travel Range Errorof  Error of Error of  Largest

Eigenray Time (sec) (km) Latitude  Longitude  Depthat  Lyapunov
atreceiver atreceiver  receiver  Exponents

1 2196.178  3252.383  0.000005° 0.000003°  0.0003km 0.018

2 2195.626  3252.283  0.000001° 0.000001°  0.0003km 0.0090

3 2195519 3252.383  0.000001° 0.000001°  0.0002km 0.0056

4 2195.387  3252.383  0.000004° 0.000003°  0.0002km  0.0093

5 2194.666  3252.383  0.000003° 0.000000°  0.0001km 0.0025

6 2194.584  3252.383  0.000005° 0.000003°  0.0004km 0.0058

7 2193.085  3252.383  0.000001° 0.000000°  0.0002km 0.0019

8 2192722 3252.382  0.000003° 0.000002°  0.0004km 0.0022

9 2192.267  3252.383  0.000002° 0.000000°  0.0000km 0.022
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3. Chaos and Predictability

We can see clearly from Table 8 that all of these eigenrays have positive
Lyapunov exponents, indicating chaos. Figure 3 is the calculation of the Lyapunov
exponents for these eigenrays. Another evidence to show that these rays are chaotic is
that all of these rays have broadband noisy power spectra, as are shown in Figure 4.
These spectra are obtained by using FFT to analyze the vertical ray paths of the eigenrays.

In each calculation, the vertical ray path is sampled at every 0.3 km range step.

Positive Lyapunov exponents and broadband noisy power spectra indicate that all
of the rays listed in Table 8 are chaotic. However, these rays, though chaotic, are all
predicted with very high accuracy: within 0.000005° of both the receiver’s latitude and
the receiver’s longitude, and within 0.0005 km of the receiver's depth (Please see Table
8). It is worthwhile mentioning that these high accuracy predictions are made even in the

presence of chaos.

4. Conclusions
In this section, we have studied chaos of underwater sound from California to
Hawaii. We still use the 3-D ray equations that have been used to study Heard-to-
Ascension propagation in the previous section. However, we use Levitus sound speed
data in this case, rather than NODC data. Our numerical results show that all of the rays
were chaotic, but even in the presence of chaos, we still made predictions with very high

accuracy.
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C. Overcoming ray chaos: A hypothesis

We have just presented two cases of chaos in ocean acoustics. The first case,
Heard-to-Ascension propagation (HAP), has a very limited predictability due to chaos.
However, the second case, California-to-Hawaii propagation (CHP), is predicted with
very high accuracy in the presence of chaos. We wonder why in CHP case we can predict

with very high accuracy even in the presence of chaos.

To answer this question, let us find the differences between the HAP case and the
CAP case. There are apparently two differences. The first is in propagation range. HAP,
whose predictability is very limited, has a range of about 9222 km, while CHP has a
range of only 3258 km. The second difference is in sound speed data. HAP used NODC
data base that has large fluctuations in the upper ocean (for instance, see Fig. 5).
However, CHP used Levitus data that is smooth in horizontal (for instance, see Fig. 6).
The smoothness of the Levitus data might be a reason why in CHP case we predicted with
a very high precision. Both range and the smoothness of sound speed field can affect

predictability.

In practice, we cannot change propagation range, but we can change the
smoothness of a sound speed data base by using some mathematical methods. From
comparisons between HAP and CHP cases, we infer that a smoothed sound speed data

base might help overcome the chaos in ocean acoustics, significantly enhancing our
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ability in long-range ocean acoustic prediction. To test this hypothesis is one of our

future efforts.

D. On predictability horizon

Ray chaos means that very long range forecasting using ray theory is impossible,
but there remains an important question: How far from a source can we predict? Smith
et al.* have given an answer to this question. Using Lyapunov exponent, they defined a
predictability horizon within which a ray acoustic problem is predictable. They
performed numerical calculations with an ocean model taking into account mesoscale

structure, and concluded that the predictability horizon is about 1,000 to 2,000 km?

However, Smith et al. used two-dimensional (2-D) ray equations in their research.
- Those equations are valid only for short ranges, at most 100 km, which is much shorter
than the predictability horizon (1,000 to 2,000 km) they estimated. In other words, the 2-
D ray equations lose validity before chaos is manifest. Therefore, the 1,000 to 2,000 km
predictability horizon suggested by Smith et al. * means that one’s ability to make
deterministic prediction is not limited by the ray chaos, but rather it is restricted by the

accuracy of the 2-D ray equations.

Consequently, to enhance our ability to predict using ray acoustics, first of all, we
need to overcome the range limitation of the ray equations. This was the motivation of

our previous paper,'” in which we derived a set of three-dimensional (3-D) ray equations.
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The 3-D equations take into account the curvature of an ellipsoidal earth and 3-D

refraction, so that they should not have range limitation.

In this report, we have used these 3-D equations to simulate ’sound propagation
with special interest in the study of ray chaos. The propagation range of California-to-
Hawaii is about 3,300 km, i.e., far beyond the predictability horizon (1000 km to 2000
km)® estimated using the 2-D model. However, the predicted results (receiver’s locations,
and travel time) are of very high accuracy (within 0.000005° of both the latitude and the
longitude of the receiver, and within 0.0005 km of the receiver’s depth). It is also
worthwhile mentioning that all of the ray paths, which are predicted with such a high
accuracy, are chaotic according to their positive Lyapunov exponents and broadband

noisy Power Spectra.

This means that even in the presence of chaos, the ray model (3-D equations with
Levitus sound speed data base) was still suitable for global ocean acoustic prediction.
Although the prediction range of this demonstrated example is 3258 km, we may predict
with satisfactory accuracy for much longer ranges. This is because that the error
tolerances we currently specified are very harsh and the 16-digit accuracy of
FORTRAN?’s double precision was not used up to specify the initial conditions..
Therefore, the 3-D ray equations (1) through (5) combined with a Levitus sound speed
data base may become a powerful and more accurate model for global scale ocean

acoustics ray tracing.
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However, it is impossible to estimate a predictability horizon according to our
current knowledge. There are two difficulties. First, the predictability is case sensitive.
It depends on both the range and the smoothness of a sound speed field, as have been
discussed in the previous section. Second, we have discovered that Lyapunov exponent,
which is used by some researchers to quantify predictability, cannot correctly quantify

predictability. This is explained as follows.

Using the largest Lyapunov exponent to quantify predictability is first suggested
by Shaw,? and followed by some researchers, for instance, in references 5,7,8,21.
However, there is not enough evidence to support this concept. In the published
references 5,7,8,21, those researchers who believe that Lyapunov exponent quantifies
predictability did not provide any numerical result to show it in their specific cases. In
fact, the only evidence we have found is the result of the analog computer experiment
presented by Shaw.” We show, in the Appendix 3 of this report, that Lyapunov exponent
does not quantify predictability. Here we emphasize that it is not correct to use Lyapunov

exponent to estimate predictability horizon in ocean acoustics, and nor in any other fields.
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lll. CHAOS IN DOUBLE-CHANNEL PROPAGATION
We have just studied the chaos in three-dimensional, long-range sound
propagation in the ocean. Now we further investigate another chaotic behavior in ocean

acoustics — chaos in double-channel propagation.

By using Linear Stability Analysis, Yar® has found that acoustic ray paths in an
oceanic double-channel exhibit chaotic behavior with larger chaoticity than in a deep
ocean acoustic channel. This section deals with a more detailed investigation on the
double-channel chaos, with special interests in the effects of oceanic internal waves. In
the following, we use the ray equations consistent with parabolic equation and a double-
channel sound speed model derived from a set of measured data from the North Atlantic
Ocean to perform numerical simulations. Poincare sections are‘ constructed to identify
chaos. It is found that oceanic internal waves are likely to induce chaos in a double-

channel.

A. An investigation using 2-D model

1. 2-D model

The 2-D ray equations, consistent with the parabolic wave equation™, are used in

this study to predict acoustic propagation. The equations are

fii=ﬁ (16)
a JP

and
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dP _ OH

T oz an
where
H(z,P,r)=05P* +¥(z,r) (18)
and
V(z,r)= 05[1 _ G } +g(z,7) (19)
S C(z)2 e

Here, z is the depth, r is the range, P is the tangent of grazing angle, H is the Hamiltonian,

Vis the potential, C, is the reference sound speed, C is the sound speed, and g is the

perturbation in the potential function.

The double-channel sound speed profile is given by the following model:

149323 - 00471063z + 0.1474732*
C(z) _ -0.1455172° + 0.0452260z*, when z < 1.5km 20)

149170+ 0.0133(z = 15), when z > 15km

which is obtained in the previous study’ by fitting the North Atlantic double-channel data
in reference *°. The perturbation used here is the same as that of Palmer et al.%, and also

the same as Yan’s previous work’, i.e.,

g(z,r) =424 exp(—l.Sz / B) sin(27tr / R) 21)
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where R is the perturbation wave length. This perturbation could be interpreted as a
highly idealized internal wave or as a single baroclinic mode representing mesoscale
structure. The exponential dependence on depth was derived from Brunt-Vaisala
frequency; the sinusoidal formulation is similar to what Lee?S, and Baxter and Orr®’ used
to investigate the effects of internal wave on sound in the ocean. This perturbation is not
realistic. The advantage of using this simplified model is that Poincare section can be
used to show chaos graphically. By using this sound speed model, a double-channel

profile is depicted in Fig. 7.

2. Numerical calculations

The ray equations (16) and (17) are integrated using the fourth-order Runge-Kutta
method with adaptive step size control.” The calculation accuracy is controlled by
specifying a maximum fractional error (107°) in any single integration step. Reflections
are assumed at the ocean surface and bottom. After each step of integration, a check is
made to see if the ray has penetrated the surface and bottom. If it has, then an iterative
search is performed to determine the depth (with error less than 1 mm) and the angle of

reflection.

Poincare section is used to show chaos. It is depicted in such a way that the ray
path is sampled every cycle of the range-dependent perturbation, i.e., 10 km when the

perturbation wave length R in Eq. (21) is 10 km.
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The parameters in Eq. (21) are B=1.0, R=5,10, and 15 km, respectively, which are
typical in a fluctuating ocean’*[R=5 km corresponds to the horizontal wavelength of an
internal wave (peak of spectrum)]. Two values are used for the parameter 4 in Eq. (21).
The first is 4=0.0025 that corresponds approximately to 5m/s of sound speed
perturbation, a typical value in the ocean®®, and the second is 4=0.001 corresponding
to 8C= 2.0 m/s in reference®’. This ocean model, of cause, is not realistic. However, the

numerical results produced as follows can provide qualitative information.

3. Results

Fig. 8 through 13 are Poincare sections with perturbation strength 4=0.0025. In
these figures, the smooth closed curves are regular trajectories; and the apparently random
distribution of points in some bounded region represent the chaos. We can see from these
figures that chaos occurred in this case. From Yan’s paper’, we know that this
perturbation strength did not induce chaos in a deep ocean acoustic channel, but it did
induce chaos in both Yan’s paper and this work. This illustrates that ray chaos is more
likely to occur in a double-channel than in a deep ocean channel. From Fig. 8, 9, and 10,
we can also see that chaotic trajectories vary with the perturbation wave length R, but we
still do not know how the parameter R affects chaoticity. The horizontal wave length of
an internal wave ranges from 0.5 km to 50 km, and for the peak of specfrum is about 5
km?. Here, we only used 5, 10, and 15 km in the calculations, i.e., the values around the

peak of spectrum.
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Figs. 14 through 19 are the Poincare sections for perturbation strength 4=0.001.
These figures also show that some of the ray trajectories exhibit chaotic behavior.
However, in these figures, chaotic trajectories were significantly less than those in Figs.
8 through 13. This is due to the decrease in the perturbation strength. It is difficult to
specify a maximum perturbation strength for internal waves. It varies at the different
region of the oceans, and varies significantly in published references. The values used
here are taken from published references.””*. To have a better understanding, we use

measured sound speed data to make a further study.

B. Further study using 3-D model with measured sound speed
data

1. Ray tracing
We have just shown that chaos can be induced by internal waves in a double-
channel. In that study, we used 2-D ray equations and a sound speed model. That study
has two shortcomings. First, the ray equations are 2-D so that they may lose validity
before chaos manifests. Second, the sound speed model ‘may not well represent the real
ocean environment. To overcome these shortcomings, we use the ray equations (1)
through (5) and the measured sound speed data provided by the National Oceanic Data

Center (NODC).

In our original plan, a 3-D ray tracing was to be performed using the NODC data.
However, we cannot complete this task because the NODC data we got cannot be used to

construct a 3-D sound speed field. The most sound speed data sets we have obtained are
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lack of the data corresponding to the depths between 400 to 2000 m, while these data are
crucial to constructing a double-channel profile. Fortunately, we found some complete
double-channel data at longitude 14°E, as are depicted in Fig. 20. We use these double-
channel sound speed profiles (SSP) to perform ray tracing. For each SSP, Cubic Spline
Method" is used to estimate the sound speed at a given depth. Then the linear

interpolation between the two adjacent SSPs gives the sound speed at a given latitude.

We still use the 3-D ray equations (1) through (5). However, we use

oc¢
ya

0, and a(0)=0 (22)

to restrict a ray to stay at 14°E, because as mentioned above the double channel sound
speed profiles we got are along this longitude direction. In this way, we use the 3-D ray
equations and the 2-D sound speed field (Fig. 22) to perform ray tracing. Although
horizontal refraction is neglected in this case, earth curvature is taken into account in the
ray tracing by using the 3-D ray equations. In addition, we use the measured double-

channel profiles. These approaches allow the following numerical results to be more

realistic than those in the previous section.

2. Numerical results

Figure 21 shows the ray paths in the double-channel. In these calculations, the

source was placed at the upper channel axis with depth of 0.4 km. Table 9 lists the
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largest Lyapunov exponents for these rays. We can see from this table that all of the rays
have positive Lyapunov exponents, indicating chaos. We also constructed power spectra
for these rays, as are shown in Fig. 22. These power spectra are obtained by using FFT to
process the vertical path data sampled at 1 km step in range. We can see clearly that all
of the power spectra are broadband, indicating chaos. This is consistent with the positive

Lyapunov exponents listed in Table 9.

Table 9 Lyapunov exponents for the acoustic rays in the double-channel

Launch grazing angle (Deg.) Largest Lyapunov exponent
0 0.057
1 0.076
2 0.067
3 | 0.015
4 0.076
5 0.011
6 0.012
7 0.027
8 0.036
9 0.035
10 0.029
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Recall that in the previous section we used 2-D ray equations and a weakly range-
dependent double-channel model to study chéos. Our numerical results of those -
calculations suggested that only a few rays are chaotic, and that the number of chaotic
rays depends on the perturbation strength assigned to the model. The numerical results
(Table 9, and Fig. 22), however, provide a different point of view: all of the rays
constructed using the measured sound speed data are chaotic. It appears that in a real
ocean environment chaoticity (here, we mean the number of chaotic rays) is significantly

larger than that we estimated using the ocean model.

IV. DISCUSSIONS: ON THE SIGNATURE OF CHAOS IN
ACOUSTIC MEASURMENTS

We have shown in Section II that the rays between Heafd Island and Ascension
Island are very chaotic. We are now interested in finding the signature of the chaos in the
acoustic measurements made at Ascension Island during the Heard Island Feasibility
Test. According to the published reference 17, the received signals at Ascension Island
are characterized as “An unexpected combination of phase stability and amplitude

variability.” What is the signature of the chaos?

Ray chaos means that the ray paths are extremely sensitive to launch angles (the
launch azimuth and the launch grazing angle in the 3-D case). However, no matter how
sensitive to the launch angles they are, some eigenray paths should exist between Heard

Island and Ascension Island where the signals were received. In addition, these eigenray
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In summary, chaos might enhance the amplitude variability of the received signals
at Ascension Island. The discussions presented above appear to explain why the received
signals at Ascension Island Were characterized as “unexpected combination of phase
stability and amplitude variability." For shallow water and a moving source however,

chaos might have quite different signature.
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V.  APPENDIX 1: DERIVATION OF RANGE EQUATION

The derivation of the range equation is as follows. At the sea level, we have

dR=(udg)’ +(vcosgda) 23)

according to Geodesy'. Using Eq. (23 ), we can write
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dR dg\’ dA\’
T\/(#z) +("C°S¢z) |
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=c059\/( £ cosa) +( 4 sina)
H=r v—r

where use was made of Egs. (1) and (2). Now we complete the derivation. We can see

24)

from this equation that when r=6=0 (i.e., a ray is restricted at the sea surface,) dR=ds.

This means that the range equals to the path length in this particular case.

Vi. APPENDIX 2: PARAMETERS OF HEARD-TO-ASCENSION
RAYS

Listed as follows are all the rays that satisfied the error tolerance: 0.000005° for
the latitude at the receiver, and 0.005° for the longitude at the receiver. In all of our
shooting processes, the error tolerance for the ending longitude is also set to 0.000005°,
but none of the rays satisfied this error tolerance, due to chaos. Instead, we list those rays
that are closest to eigenrays. In the following, LA represents launch grazing angle. Ray

number in the first column means the number of shooting in searching for an eigenray.

Table 10 Rays between Heard Island and Ascension Island

LA=0

Time, sec Range,km Longitude  Depth ErrorL Error D
Ray 1 6258.395 9222.779 -14.42369 0.8735 0.0037 0.0415
Ray 2 6258.037 90222.246 -14.4158 0.9369 0.0042 0.1049

LA=0.25

Time, sec Range,km Longitude  Depth ErrorL ErrorD
Ray 1 6257.977 9222315 -14.4168 0.7847 0.0032 0.0473
Ray 2 6258.009 9222.362 -14.4175 0.71613 0.0025 0.1159
Ray 3 6257.943 9222273 -14.4162 0.87732 0.0038 0.0453
Ray 4 6258.237 9222.73  -14.423 0.88307 0.003 0.051
Ray 5 6257.937 9222288 -14.4164 0.91303 0.0036 0.081
Ray 6 6257.933 9222.333 -14.41704 1.003 0.003 0.171
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Ray 7
Ray 8

LA=0.5
Ray 1
Ray 2
Ray 3
Ray 4
LA=0.75

Ray 1

LA=1.0
Ray 1
LA=1.25
Ray 1
LA=1.5

Ray 1
Ray 2

LA=1.75

Ray 1

LA=2.0

Ray 1

LA=2.25
Ray 1
Ray 2
Ray 3
LA=2.5
Ray 1
Ray 2
Ray 3
Ray 4
LA=2.75
Ray 1

LA=3

6258.134
6258.295

Time, sec
6257.977
6258.247
6258.132
6258.206

Time, sec
6258.253

Time, sec
None

Time, sec
None

Time, sec
6258.049
6257.886

Time, sec
6258.167

Time, sec
6256.658

Time, sec
6258.186
6258. 103
6258.133

Time, sec
6258.229
6258.112
6258.207
6258.134

Time, sec
None

9222.579 -14.4207
9222.81 -14.42416

Range,km Longitude
9222.457 -14.4186
0222.778 -14.4233
9222.607 -14.4208
9222.845 -14.4243

Range,km Longitude
9222.9 -14.42496

Range,km Longitude

Range,km Longitude

Range,km Longitude
0222572 -14.42036
9222.454 -14.41854

Range,km Longitude
0222704 -14.42228

Range,km Longitude
9222.659 -14.42382

Range,km Longitude
0222.722 -14.4228
9222.659 -14.42199
0222745 -14.4232

Range,km Longitude
9222.732 -14.42369
0222.578 -14.42142
9222.655 -14.42257
9222.548 -14.4209

Range,km Longitude

0.7939
0.8364

Depth
0.7903
0.8953
0.8353
0.8849

Depth
0.7156

Depth

Depth

Depth
0.73701
0.9512

Depth
0.78168

Depth
0.9905

Depth
0.76028
0.63804
0.74994

Depth
0.87021
0.97489
0.95438
0.91541

Depth

0.0007 0.0381
0.0042 0.0044

Error L
0.0014
0.0033
0.0008
0.0043

Error L.
0.005

Error L

Error L

Error L
0.0004
0.0015

ErrorL
0.0023

Error L
0.0038

ErrorL
0.0028
0.002
0.0032

Error L
0.0037
0.0014
0.0026
0.0009

Error L

Error D
0.042
0.0633
0.0033
0.0329

Error D
0.117

Error D

Error D

Error D
0.095
0.119

Error D
0.05

Error D
0.158

Error D
0.072
0.194
0.082

Error D
0.068
0.142
0.122
0.083

Error D
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Time, sec

Ray 1 6257.617
Ray 2 6257.47
Ray 3 6257.422
Ray 4 6257.751
LA=3.25

Time, sec
Ray 1 6257.677
LA=3.5

Time, sec
Ray 1 6257.29
LA=3.75

Time, sec
Ray 1 6257.188
Ray 2 6257.161
Ray 3 6256.941
Ray 4 6256.944
Ray 5 6257.181
Ray 6 6256.957
Ray 7 6256.39
LA=4.0

Time, sec
Ray 1 6256.422
Ray 2 6257.001
Ray 3 6256.943
Ray 4 6257.036
Ray 5 6256.694
Ray 6 6257.053
Ray 7 6256.991
Ray 8 6257.064
Ray 9 6256.634
LA=4.25

Time, sec
Ray 1 6256.681
Ray 2 6256.689
Ray 3 6256.326
Ray 4 6256.656
Ray 5 6256.644
Ray 6 6256.45
LA=4.5

Time, sec
Ray 1 6256.187
Ray 2 6256.319
Ray 3 6256.442
Ray 4 6256.297
LA=4.75

Time, sec
Ray 1 6255.593
Ray 2 6255.393

Range,km
9222 .487
9222.271
9222.258
9222.751

Range,km
9222.538

Range,km
9222.512

Range,km
9222.652
9222.576
9222.322
9222.278
9222.633
9222.297
9222.235

Range,km
9222.495
9222.795
9222.635
9222.799
9222.661
9222.758

9222.77
9222.833
9222.229

Range,km
9222.634
9222.694
9222 .191
9222.596
9222.647
9222.293

Range,km
9222.309
9222.363
9222.548
9222.532

Range,km
9222.382
9222.326

Longitude
-14.41976
-14.41661
-14.41636
-14.42381

Longitude
-14.4209

Longitude
-14.42021

Longitude
-14.42245
-14.42111
-14.41738
-14.41665

-14.4219
-14.41696
-14.4159

Longitude

-14.4198
-14.42438
-14.42194
-14.42423
-14.42233
-14.42383
-14.42402
-14.42487
-14.41592

Longitude
-14.42275
-14.42352
-14.41615
-14.42209
-14.42282
-14.41775

Longitude
-14.41754
-14.41834
-14.42109
-14.42084

Longitude
-14.41888
-14.41805

Depth
1.0447
0.68636
0.88974
0.95369

Depth
0.78817

Depth
0.7316

Depth
1.04295
0.77277
1.01895
0.847133
0.78541
1.0246
1.0387

Depth
1.17785
0.79234
0.909162
0.93649
1.121903
0.86011
0.998634
0.85878
0.58457

Depth
0.60981
0.64245
1.056633
1.02702
1.051741
0.737135

Depth
1.08604
0.70026
0.592678
1.09902

Depth
0.61118
1.139497

ErrorL ErrorD

0.0002 0.213
0.0034 0.146
0.0036 0.058
0.0038 0.121
Error .  Error D

0.0009 0.044
ErrorL ErrorD

0.0002 0.1

ErrorL Error D
0.0025 0.211
0.0011 0.0592
0.0026 0.187
0.0033 0.015
0.0019 0.0466
0.003 0.192
0.0041 0.206

ErrorL ErrorD
0.0002 0.345
0.0044 0.0397
0.0019 0.077
0.0042 0.104
0.0023 0.289
0.0038 0.028
0.004 0.166
0.0049 0.026
0.0041 0.2474

ErrorL ErrorD
0.0028 0.2222
0.0035 0.1895
0.0037 0.255
0.0021 0.195
0.0028 0.22
0.0022 0.095

ErrorL ErrorD
0.0025 0.254
0.0017 0.132
0.0011 0.2393
0.0008 0.267

ErrorL.  Error D
0.0011 0.221
0.0019 0.307
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LA=5.0

Time, sec
Ray 1 6254.874
Ray 2 6254.285
Ray 3 6254.951

LLA=5.25

Time, sec
Ray 1 6254.642
Ray 2 6254.562
Ray 3 6254.913
Ray 4 6254.773
Ray 5 6254.726
Ray 6 6254.837
Ray 7 6254.614
Ray 8 6254.345
Ray 9 6254.913

LA=5.5

Time, sec
Ray 1 6254.196
Ray 2 6253.877

LA=5.75

Time, sec
Ray 1 6253.957
Ray 2 6253.664

LA=6

Time, sec
Ray 1 6253.081
Ray 2 6253.337
Ray 3 6253.519
Ray 4 6253.042
Ray 5 6253.03
Ray 6 6253.275
Ray 7 6253.602

LA=6.25

Time, sec
Ray 1 6252.964
Ray 2 6252.887
Ray 3 6252.896
Ray 4 6252.709

Ray 5 6252.679
Ray 6 6252.87
Ray 7 6252.84

Ray 8 6252.798
Ray 9 6252.867
Ray 10 6252.772
Ray 11 6252.775
Ray 12 6252.864
Ray 13 6252.784
Ray 14 6252.734
Ray 156 6252.744

Range,km
9222.272
9222.427
9222.304

Range,km
9222.281
9222.159
9222.703
9222.478
9222.408

922257
9222.243
9222.276
9222.705

Range,km
9222.703
9222.713

Range,km
9222.536
9222.097

Range,km
9222.339
9222.68
9222.35
9222.183
9222.226
9222.637
9222.521

Range,km
9222.616
9222.67
9222.542
9222.238
9222.192
9222.581
9222.542
9222.546
9222.511
9222.507
9222.509
9222.511
9222.523
9222 .45
9222.469

Longitude
-14.41788
-14.42019
-14.41842

Longitude

-14.418
-14.41618
-14.42427
-14.42093
-14.41988
-14.4223
-14.41744
-14.41789
-14.4243

Longitude
-14.42417
-14.42433

Longitude
-14.42137
-14.41487

Longitude
-14.41889
-14.42396
-14.41907
-14.41658
-14.41723
-14.42331
-14.42162

Longitude
-14.42282
-14.42358
-14.42167
-14.41717
-14.41648
-14.42224
-14.42167
-14.42174
-14.42119
-14.42116
-14.42119
-14.42122

-14.4214
-14.42032
-14.42059

Depth
0.55961
0.580166
1.08

Depth
1.104011
1.07074
0.78058
1.0377
1.06278
1.10143
1.107318
1.08102
0.7351

Depth
0.52629
1.02665

Depth
0.5542
0.52161

Depth
0.80671
1.1262
0.5876
0.48903
1.21112
0.724091
1.148474

Depth
0.5053
1.15308
0.8374
0.5074
0.5059
0.6338
0.5433
1.21896
0.9311
1.24002
1.2023
1.002
1.19422
1.2588
-1.2552

Error L
0.0021
0.0002
0.0016

Error L

0.002
0.0038
0.0057
0.0009
0.0001
0.0023
0.0026
0.0021
0.0043

Error L
0.0042
0.0043

Error L
0.0014
0.0051

Error L
0.0011
0.004
0.0009
0.0034
0.0028
0.0033
0.0016

Error L
0.0028
0.0036
0.0017
0.0028
0.0035
0.0022
0.0017
0.0017
0.0012
0.0012
0.0012
0.0012
0.0014
0.0003
0.0006

Error D
0.2724
0.2518
0.248

Error D
0.272
0.238
0.0515
0.206
0.231
0.269
0.275
0.249
0.097

Error D
0.3057
0.195

Error D
0.2778
0.3104

Error D
0.0253
0.2942
0.2444
0.343
0.379
0.108
0.318

Error D
0.3267
0.321
0.005
0.475
0.3261
0.1982
0.2887
0.387
0.099
0.408
0.37
0.17
0.362
0.426
0.423

42




Ray 16
Ray 17
Ray 18
Ray 19
Ray 20

LA=6.5

Ray 1
Ray 2
Ray 3
Ray 4
Ray 5
Ray 6
Ray 7
Ray 8
Ray 9
Ray 10
Ray 11
Ray 12
Ray 13
Ray 14
Ray 15
Ray 16
Ray 17
Ray 18
Ray 19
Ray 20
Ray 21
Ray 22
Ray 23
Ray 24
Ray 25

LA=6.75

Ray 1
Ray 2
Ray 3
Ray 4

LA=7.0

Ray 1
Ray 2
Ray 3
Ray 4
Ray 5
Ray 6
Ray 7

LA=7.25
Ray 1

LA=7.5

6252.847
6252.914
6252.643
6252.688
6252.881

Time, sec
6252.548
6252.507
6252.413
6252.465
6252.394
6252.749
6252.526
6252.388
6252.413
6252.886
6252.388
6252.737
6252.785
6252.537
6252.628
6252.438
6252.423
6252.426
6252.444
6252.575
6252.361
6252.328
6252.823
6252.399
6252.476

Time, sec
6251.375
6251.428
6251.368
6251.411

Time, sec
6251.743
6251.832
6251.778
6250.889
6251.528
6251.651

6251.54

Time, sec
None

9222.6
9222.562
9222.33
9222.207
9222.565

Range,km
9222.518
9222.262
9222.315
9222.385
9222.291
9222.615
9222.415
9222.281
9222279
9222.827
9222.281
9222.595
9222.669
9222.498
9222.527

9222.21
9222.331
9222.168
9222.198
9222.556
9222.239

9222.19

9222.75
9222.255
9222.243

Range,km
9222.557
9222 .64
9222.69
9222.084

Range,km
9222.486
9222.561
9222.489

9222.18
9222.16
9222.334
9222.167

Range,km

-14.42254
-14.42197
-14.41852

-14.4167
-14.42202

Longitude
-14.4214
-14.41753
-14.41839
-14.4194
-14.41805
-14.42284
-14.4199
-14.41788
-14.4179
-14.42597
-14.4179
-14.42254
-14.42363
-14.4211
-14.42154
-14.41683
-14.41863
-14.4162
-14.41666
-14.42196
~-14.4173
-14.41654
-14.42482
-14.4175
-14.41732

Longitude
-14.42277
-14.42401
~14.42473

-14.4156

Longitude
-14.42115
-14.42223
-14.42117
-14.41653
-14.41628
-14.41887
-14.41639

Longitude

0.97922
0.7599
1.0008

0.48022

0.99737

Depth
1.12819
0.8693
1.0823
1.0251
1.14342
0.84029
0.71432
1.150145
0.71312
0.81557
1.1398
0.93785
0.8986
1.13578
1.21604
-0.76615
1.147514
0.4817
0.48346
1.13611
1.1558
1.155
0.621658
0.69784
0.4991

Depth
0.50002
0.54858

0.7102

1.27591

Depth
0.50763
1.2396
1.08045
1.28603
0.61481
0.716851
0.7345

Depth

0.0025 0.147
0.002 0.072
0.0015 0.169
0.0033 0.352
0.002 0.165

ErrorL Error D
0.0014 0.296
0.0025 0.037
0.0016 0.25
0.0006 0.193
0.002 0.311
0.0028 0.008
0.0001 0.118
0.0021 0.318
0.0021 0.119
0.006 0.016
0.0021 0.3078
0.0025 0.1059
0.0036 0.067
0.0011 0.304
0.0015 0.384
0.0032 0.0659
0.0014 0.3155
0.0038 0.35
0.0033 0.349
0.002 0.304
0.0027 0.324
0.0035 0.323
0.0048 0.21
0.0025 0.135
0.0027 0.3329

Error L. Error D
0.0028 0.332
0.004 0.284
0.0047 0.122
0.0044 0.444

ErrorL  ErrorD
0.0012 0.324
0.0022 0.408
0.0012 0.248
0.0035 0.454
0.0037 0.218
0.0011 0.115
0.0036 0.097

ErrorL. ErrorD
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Time, sec
Ray 1 6249.89
Ray 2 6249.765
Ray 3 6249.882
LA=7.75
, Time, sec
Ray 1 6248.067
Ray 2 6248.293
Ray 3 6248.37
Ray 4 6248.164
Ray 5 6248.136
Ray 6 6248.139
Ray 7 6248.085
Ray 8 6248.258
Ray 9 6248.174
Ray 10 6248.221
Ray 11 6248.439
Ray 12 6248.463
Ray 13 6248.426
Ray 14 6248.084
LA=8

Time, sec
None
LA=8.25

Time, sec
Ray 1 6246.175
Ray 2 6245.862
Ray 3 6246.015
Ray 4 6246.244
Ray § 6246.084
Ray 6 6246.024
Ray 7 6246.111
Ray 8 6246.041
Ray 9 6246.049
Ray 10 6246.174
Ray 11 6246.123
Ray 12 6246.11
Ray 13 6246.087
Ray 14 6246.185
Ray 15 6246.039
Ray 16 6246.142
Ray 17 6246.047
Ray 18 6246.144
Ray 19 6246.042
Ray 20 6246.028
Ray 21 6245.885
Ray 22 6246.066
Ray 23 6246.113
Ray 24 6246.03
Ray 25 6246.072
Ray 26 6246.071
Ray 27 6246.146
Ray 28 6246.168

Range,km
9222.313
9222.122

9222.68

Range,km
9222.077
9222.409
9222.529
9222.218

9222.18
9222.179
9222.106
9222.363
9222.235
9222.306
9222.629
9222.567
9222.517

92221

Range,km

Range,km
9222.508
9222.127
9222.266
9222.604
9222.369
9222277
9222.412
9222.308
9222.317
9222.502
9222.426
9222 412
9222.373
9222.519
9222.414
9222 457
9222.314
9222.458
9222.307
9222.288
9222.275
9222.349
9222.411
9222.287
9222.433
9222.349
9222.462
9222.496

Longitude
-14.41902
-14.4162
-14.42448

Longitude
-14.4166
-14.42157
-14.42337
-14.41873
-14.41816
-14.4182
-14.41708
-14.4209
-14.419
-14.42
-14.4249
-14.42391
-14.42316
-14.41698

Longitude

Longitude
-14.42265
-14.41697
-14.41904

-14.4241
-14.4206
-14.41923
-14.4212
-14.4197
-14.4198
-14.4226
-14.42143
-14.4212
-14.42063
-14.42281
-14.42125
-14.4219
-14.4198
-14.4219
-14.4197
-14.4194
-14.41919
-14.42028
-14.42121
-14.41938
-14.4215
-14.4203
-14.422
-14.4225

Depth

0.74816
0.747638

1.32519

Depth
1.3533
1.375
1.39542
1.3583
1.342
1.3556
1.3685
1.3529
1.3452
1.3432
1.403
0.453485
0.3485
1.3683

Depth

Depth
1.68583
0.70018
1.622
1.43566
1.55543
1.5777
1.5058
1.6314
1.57712
1.45562
1.51594
1.5961
1.63499
1.4707
0.4763
1.541
1.6017
1.45795
1.5738
1.6417
1.05125
1.6324
1.5148
1.5868
0.740505
1.56857
1.4553
1.5754

Error L Error D
0.001 0.084
0.0038 0.085
0.0045 0.493

ErrorL Error D
0.0034 0.521
0.0016 0.543
0.0034 0.563
0.0013 0.526
0.0018 0.510
0.0018 0.523
0.0029 0.537
0.0009 0.521
0.001 0.513
0 0.511
0.0049 0.571
0.0039 0.3786
0.0032 0.4835
0.003 0.5363

ErrorL ErrorD

Error L.  Error D
0.0027 0.753
0.003 0.617
0.001 0.790
0.0041 0.603
0.0006 0.723
0.0008 0.746
0.0012 0.674
0.0003 0.799
0.0002 0.745
0.0026 0.624
0.0014 0.683
0.0012 0.764
0.0006 0.703
0.0028 0.139
0.0013 0.356
0.0019 0.709
0.0002 0.769
0.0019 0.626
0.0003 0.741
0.0006 0.809
0.0008 0.219
0.0003 0.8
0.0012 0.683
0.0006 0.755
0.0015 0.091
0.0003 0.753
0.002 0.623
0.0025 0.743
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Ray 29 6246.08
Ray 30 6246.068
Ray 31 6246.154
Ray 32 6246.173
Ray 33 6245.801
Ray 34 6245.738

LA=8.5

Time, sec
Ray 1 6244.726
Ray 2 6244.834
Ray 3 6244.935
Ray 4 6244722
Ray 5 6244.828
Ray 6 6245.037
Ray 7 6244.82
Ray 8 6244.763
Ray 9 6244.782
Ray 10 6244.926
Ray 11 6245.005
Ray 12 6244.86
Ray 13 6244.763
Ray 14 6244.774
Ray 15 6244.794
Ray 16 6244774
Ray 17 6244.947
Ray 18 6244.99
Ray 19 6244.981
Ray 20 6244.771
Ray 21 6244.804
Ray 22 6244.77
Ray 23 6244.96
Ray 24 6244.697
Ray 25 6244.82
Ray 26 6244.812
Ray 27 6244.877
Ray 28 6244.724
Ray 29 6244.964
Ray 30 6244.724

LA=8.75

Time, sec
Ray 1 6244.073
Ray 2 6244.079
Ray 3 6244.072
Ray 4 6244.064

LA=9.0

Time, sec
Ray 1 6244.828
Ray 2 6244.977
Ray 3 6244.796
Ray 4 6244.972
Ray 5 6244.899
Ray 6 6244.973

0222.364
9222.348
9222.473
9222.503

9222.18
9222.084

Range,km
9222.037
9222.196
9222.349
9222.031
9222.188
9222.497
9222.179
9222.093
9222.118
9222.336
9222.449
9222.235
9222.095
9222.107
9222.136
9222.106
9222.362
9222.431
9222.419
9222.102
9222.152
9222.102
9222.384
9221.988
9222.175
9222.164
9222.258
9222.032
9222.389
9222.032

Range,km
9222.321
9222.326
9222.309
9222.302

Range,km
9222.26
9222.455
9222.191
9222.453
9222.338
9222.466

-14.4205
-14.42027
-14.42214

-14.4226

-14.4178

-14.4164

Longitude

-14.41604
-14.4184
-14.42069
-14.41596
-14.4183
-14.4229
-14.41816
-14.41688
-14.41726
-14.4205
-14.42217
-14.419
-14.4169
-14.41709
-14.41752
-14.41708
-14.4209
-14.42191
-14.42173
-14.417
-14.4178
-14.41701
-14.42121
-14.41532
-14.41811
-14.41795
-14.41932
-14.41598
-14.4213
-14.41598

Longitude
-14.42028
-14.42036

-14.4201
-14.41999

Longitude
-14.41909
-14.42205

-14.4181
-14.42201
-14.4203
-14.4222

1.4971
1.61637
1.46983

1.4536

1.322

1.3297

Depth
1.75247
1.74041
1.7427
1.73772
1.7366
1.7429
1.737
1.73196
1.7593
1.74
1.74205
1.73653
1.7399
1.7518
1.7382
1.7362
1.74075
1.7452
1.7433
1.7339
1.76324
1.7416
1.7384
1.7467
1.7347
1.7312
1.74013
1.7353
1.74772
1.7353

Depth
1.6431
1.6312
1.4702

1.667

Depth
1.56
1.602
1.56557
1.59571
1.59307
1.2741

0.0005 0.665
0.0003 0.784
0.0021 0.638
0.0026 0.622
0.0022 0.49
0.0036 0.498

Error L  Error D
0.004 0.920
0.0016 0.908
0.0007 0.911
0.004 0.906
0.0017 0.906
0.0029 0.911
0.0018 0.905
0.0031 0.9
0.0027 0.928
0.0005 0.908
0.0022 0.910
0.001 0.905
0.0031 0.907
0.0029 0.920
0.0025 0.906
0.0029 0.904
0.0009 0.909
0.0019 0.913
0.0017 0.911
0.003 0.902
0.0022 0.931
0.003 0.910
0.0012 0.906
0.0047 0.915
0.0019 0.903
0.002 0.899
0.0007 0.908
0.004 0.903
0.0013 0.916
0.004 0.903

ErrorL ErrorD
0.0003 0.811
0.0004 0.799
0.0001 0.638
0 0.835

Error L Error D
0.0009 0.728
0.002 0.770
0.0019 0.734
0.002 0.764
0.0003 0.761
0.0022 0.442
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LA=9.25
Time, sec Range,km Longitude  Depth Error L ErrorD
Ray 1 none

LA=9.5
Time, sec Range,km Longitude  Depth ErrorL ErrorD

Ray 1 6241.44 9222008 -14.41572 1.25978 0.0043 0.428
Ray 2 6241.725 9222.445 -14.42222 1.43979 0.0022 0.608
Ray 3 6241.823 9222.59 -14.42438 1.389362 0.0044 0.557
Ray 4 6241.737 9222.46 -14.42243 1.3751 0.0024 0.543
Ray 5 6241.667 9222352 -14.4208 1.3754 0.0008 0.543
Ray 6 6241.679 9222377 -14.42119 1.4106 0.0012 0.579
Ray 7 6241.801 9222.551 -14.42381 1.3441 0.0038 0.512

LA=9.75
Time, sec Range,km Longitude  Depth ErrorL Error D

Ray 1 6240.401 9222.261 -14.4199 0.7692 0.0001 0.063
Ray 2 6240.45 9222.283 -14.42025 0.42419 0.0003 0.408
Ray 3 6240.404 9222283 -14.42026 0.8805 0.0003 0.048
Ray 4 6240.377 9222.249 -14.41975 0.9078 0.0002 0.076
Ray 5 6240.453 9222.292 -14.42037 0.3653 0.0004 0.467
Ray 6 6240.442 9222293 -14.4204 0.5638 0.0004 0.268
Ray 7 6240432 9222.278 -14.4202 0.5646 0.0002 0.268
Ray 8 6240.42 9222.304 -14.4206 0.8649 0.0006 0.033

LA=10

Time, sec Range,km Longitude  Depth Error L ErrorD
Ray 1 6237.277 9222271 -14.42022 17324 0.0002 0.900
Ray 2 6237.295 9222113 -14.4179 0.3 0.0021 0.532
Ray 3 6237.255 9222.033 -14.4167 0.507 0.0033 0.325
Ray 4 6237.266 9222271 -14.42022 1.9642 0.0002 1.132

LA=10.5
Time, sec Range,km Longitude  Depth ErrorL Error D

Ray 1 6233.845 9221917 -14416 1.7913 0.004 0.959
Ray 2 6233.964 9222.085 -144185 1.9243 0.0015 1.092
Ray 3 6233.942 9222.048 -14.418 1.9368 0.002 1.105
Ray 4 6234.008 9222157 -14.41963 1.9401 0.0004 1.108
Ray 5 6234.019 9222.173 -144199 1.9433 0.0001 1.111
Ray 6 6234.07 9222.248 -14.42099 1.9365 0.001 1.105
Ray 7 6233.836 9221.903 -14.4158 1.8368 0.0042 1.005
Ray 8 6234.129 9222.334 -14.4223 1.943 0.0023 1.111
Ray 9 6233.841 9221.909 -14.41593 1.8249 0.0041 0.993
Ray 10 6234.18 9222.409 -14.42338 1.98242 0.0034 1.150
Ray 11 6233.997 9222138 -14.4193 1.8938 0.0007 1.062
Ray 12 6233.9 9221.994 -14.4172 1.8747 0.0028 1.043
Ray 13 6234.193 9222.425 -14.42363 2.0105 0.0036 1.179
Ray 14 6234.081 9222.261 -14.42118 1.96827 0.0012 1.136
Ray 15 6234.218 9222.464 -14.4242 19966 0.0042 1,165
Ray 16 6234.201 9222.439 -14.42384 1.9921 0.0038 1.16
Ray 17 6234.105 9222.3 -14.42176 1.9741 0.0018 1.142
Ray 18 6234.292 9222.571 -14.42578 2.0119 0.0058 1.180
Ray 19 6234.053 9222.219 -14.4205 1.9425 0.0005 1.11
Ray 20 6234.09 09222.272 -14.42135 1.9652 0.0014 1.133
Ray 21 6234.063 9222.234 -14.42078 1.9165 0.0008 1.084
Ray 22 6234.114 9222.307 -14.42186 1.9639 0.0019 1.132




Ray 23 6233.962 9222.085 -14.41856 1.9067 0.0014 1.075
Ray 24 6233.853 9221.932 -14.41628 1.85032 0.0037 1.018

LA=11
Time, sec Range,km Longitude  Depth ErrorL Error D

Ray 1 6233.935 9222.335 -14.4214 0.50716 0.0014 0.325
Ray 2 6233.763 9222.304 -14.4209 2.12911  0.0009 1.297
Ray 3 6234.186 9222.134 -14.4184 17626 0.0016 0.93
Ray 4 6234.174 9222.126 -14.4183 1.8266 0.0017 0.995
Ray 5 6233.623 9222.093 -14.4178 2.0576 0.0022 0.83
Ray 6 6233.575 9222.021 -14.4167 1.9942 0.0033 1.162
Ray 7 6234.252 9222248 -14.4201 1.891  0.0001 1.059

VIl. APPENDIX 3: LYAPUNOV EXPONENT DOES NOT
QUANTIFY PREDICTABILITY

The main conclusion of Lorenz’s paper 3lis that for some deterministic systems
very long range forecasting is impossible. In his work, he also mentioned that “There
remains the very important question as to how long is ‘very long range'." To answer this
question, Shaw >?has computed an information parameter for Lorenz model. With this
parameter, he made a prediction as to how long the information in a given initial
condition will persist. His prediction was confirmed by an analog computer experiment.
The information parameter he used is identical to Lyapunov exponent, as he mentioned in
his paper. Therefore, Shaw’s work implies that Lyapunov exponent quantifies the

predictability of chaotic systems -- a very important concept.

This concept is accepted by many researchers,****3>3 and has been used to define

a predictability horizon in ocean acoustics. However, there is not enough evidence to
support this concept. In the published references 33,34,35,and 36 those researchers who

believe that Lyapunov exponent quantifies predictability did not give any example to
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show it in their specific cases. In fact, the only evidence we have found is the result of

the analog computer experiment presented by Shaw *,

Therefore, the objective of this appendix is to numerically test the correctness of
that concept. Considering that Lyapunov exponent is an asymptotic value at very long
range, but loss of predictability usually occurs at a short range, we have a question: Can
Lyapunov exponent quantify predictability? In the following, we use Wolf et al.’s
method ** to compute Lyapunov exponents for Lorenz model. Then we use the Lyapunov
exponents to make predictions as to how long the information in a given initial condition
will persist. Finally, we conduct numerical experiments to test the correctness of this

prediction.

We use Wolf et al.’s published computer code ** to estimate Lyapunov exponents

for the Lorenz model

X=0'(Y-—X)
Y=X(R-2)-7Y. (25)
Z=XY-bZ

We make a few revisions in this published FORTRAN program. First, we use
FORTRAN’s double precision. Second, we use Press et al.’s subroutine RK4 instead of
the DEVERK in the published code. Third, we change the model parameters to what

Lorenz and Shaw used.
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In the following calculations, the model parameters are o= 10.0, R= 28.0, b= 8/3,
the same as that Lorenz *' and Shaw *> used. The initial conditions are X(0) = 0.0, Y(0) =
1.0, Z(0) = 0.0, according to Lorenz *'. The step size is 0.001, the same as Shaw’s, and
1,000,000 steps of integration are performed for each calculation. Numerical experiments

are performed with a digit personal computer (486DX2, 66 MHz).

First we estimate Lyapunov exponents. With the method and parameters given in

the previous paragraph, we get the largest Lyapunov exponent: A1 = 1.30 bits/sec.

Then let us make a prediction using the Lyapunov exponent. We perform two
calculations. In the first calculation, we use initial conditions (0, 1, 0), and in the second
calculation, we use (0.0001, 1, 0). The information value of X(0) we set in this way is
approximately 13 bits (-1og20.0001). Thus, the time after which the initial data is lost,
according to Shaw *, is tp = 13 bits/1.30 bits per second = 10 sec. Therefore, the
prediction made with the Lyapunov exponent is: the system may become unpredictable at
about 10 seconds. In the Lorenz model, time is dimensionless. We use “second” here as

the unit of time to be in consistent with that used by Shaw.

Now, we depict the results of the two calculations in Fig. 23 to test the correctness

of this prediction. In this figure, the solid line is the result of the first calculation, and the
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dashed line represents the second calculation. If the prediction made with Lyapunov
exponent is correct, the two lines should diverge from each other at about 10 seconds, as
a result of losing 13 bits of initial data. However, the divergence did not occur until
about 29 seconds. This suggests that the relative error of the prediction made with the
Lyapunov exponent is (29-10)/29~66%. It is too large to be accepted. Obviously,
Lyapunov exponent does not have predictive value and cannot be used to quantify

predictability.

Let us discuss why the Lyapunov exponent did not quantify the predictability in
this case. Fig. 24 gives the largest Lyapunov exponenf we estimated for this particular
case. From this figure, we can see that at 29 seconds the value of the exponent is about
0.49 bits per second (Point A in Fig. 24). This means that before the system became
unpredictable the maximum rate of destroying information was actually 0.49 bits/sec.
However, the asymptotic value 1.30 bits/sec -- the Lyapunov exponent -- was used to

measure the predictability. This is why we could not make a correct prediction.

The objective of this appendix is to investigate whether Lyapunov exponent has !
predictive value. This is done by performing numerical experiments with Lorenz model.
Our numerical results show clearly that Lyapunov exponent does not quantify the

predictability of a chaotic system.
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paths should be stable, if the motion of the source ship can be ignored. When the
acoustic signals were transmitted from the source ship, acoustic energy propagated to
Ascension Island through these stable eigenray paths. Therefore, the received signals had

phase stability.

As long as the source illuminated the eigenray paths, the signals received at
Ascension Island have phase stability. This could always happen, because a source can
transmit energy through a wide range of angles so that the launch angles of the eigenrays,
although need to be specified with very high accuracy due to chaos, can always be
satisfied. However, the source should have a transmitting directivity — it transmits the
acoustic energy at different intensity in different directions. Therefore, a very slight
motion of the source can cause significant amplitude variation of the received signals.
Since the source was deployed in a vertical array through a ship'®, we can expect that
during the transmissions the source moved slightly and stochastically due to the ocean
wave. Therefore, the intensity of the energy transmitted through the eigenray paths might
fluctuate stochastically during the transfnissions. This in turn caused the amplitude
variation of the received signals. This phenomenon might exhibit even if ray paths are
not chaotic. However, chaos might enhance the amplitude variability. The reason is as
follows. Chaotic ray paths are very sensitive to launch angles. Therefore, in the presence

of chaos even a very small fluctuation in the axial direction of the source may cause large

amplitude variation of received signals.
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A main conclusion is: Lyapunov exponent is an asymptotic value at very long

range, while initial data is lost at the early stage of the system’s evolution. At the early
stage, the actual rate at which a system destroys information may substantially differ from
the value of the largest Lyapunov exponent. This is why Lyapunov exponent cannot be

used to quantify predictability.

Recently, there have been some publications emphasizing Lyapunov exponent’s
role in quantifying predictability and this situation may continue. Therefore, it is
necessary to present an illustrative counterexample in this paper, showing that Lyapunov

exponent does not quantify predictability.
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Fig.1 Extreme sensitive dependence on initial conditions
Upper: the vertical ray path of eigenray 1 with launch angles
a(0)=266.7258936017752 °and 6(0)=0.5°
Lower: the vertical ray path constructed using the same a(0)
but 6(0) is perturbed by 0.000000005 °

Such a small difference in 6(0) caused the ray path to change substantially.
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Fig.2 The Lyapunov exponents for eigenray 1.
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Fig. 4 Power spectra of eigenrays between California and Hawaii
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Fig. 8 Poincare section. From inner to outer, launch angles are 1.5° 3.0 4.5 6.0¢
7.5° and 9.0° respectively. Source is at upper channel axis.
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7.5 and 9.0, respectively. Source is at upper channel axis.
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Fig. 11 Poincare section. From inner to outer, launch angles are 1.5 3.05 4.5 6.0°
7.59 and 9.0, respectively. Source is at lower channel axis.
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Fig. 12 Poincare section. From inner to outer, launch angles are 1.5° 3.0 4.5 6.0°
7.5% and 9.0, respectively. Source is at lower channel axis.
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Fig. 13 Poincare section. From inner to outer, launch angles are 1.5 3.05 4.5° 6.0°
7.5 and 9.0°¢, respectively. Source is at lower channel axis.
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Fig. 14 Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5 6.0°
7.5 and 9.0 respectively. Source is at upper channel axis.
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Fig. 15 Poincare section. From inner to outer, launch angles are 1.5° 3.0 4.5° 6.0°
7.5 and 9.0°, respectively. Source is at upper channel axis.
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Fig. 16 Poincare section. From inner to outer, launch angles are 1.5 3.0 4.5 6.0°
7.5 and 9.0° respectively. Source is at upper channel axis.
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Fig. 17 Poincare section. From inner to outer, launch angles are 1.5° 3.0 4.5 6.0°
7.5° and 9.0°9 respectively. Source is at lower channel axis.
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A=0.001, R=10 km, Zs=1.345 km
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Fig. 18 Poincare section. From inner to outer, launch angles are 1.5 3.054.556.0¢
7.5° and 9.0° respectively. Source is at lower channel axis.
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® A=0.001, R=15 km, Zs=1.345 km
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[ Fig. 19 Poincare section. From inner to outer, launch angles are 1.59 3.0% 4.55 6.0°
7.55 and 9.0 respectively. Source is at lower channel axis.
[
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Fig. 20 NODC double-channel profiles used in ray tracing

(Longitude: 14 °E, Latitude: listed in the legends.)
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Fig. 21 Ray paths in the double-channel
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Fig. 21 Ray paths in the double-channel (continue)
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Fig. 22 Power spectra for the ten rays in figure 21
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Fig. 22 Power spectra for the eleven rays in figure 21 (continue)
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Fig. 22 Power spectra for the eleven rays in figure 21 (continue)
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Fig. 22 Power spectra for the eleven rays in figure 21 (continue)
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Fig. 23  Time (dimensionless) evolution of X in Lorenz model with parameters
0=10.0, R=28.0,
b=8/3. The solid line corresponds to the initial state of (0,1,0),
and the dashed line corresponds to the initial state of (0.0001,1,0).
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Fig. 24 Calculation of the largest Lyapunov exponent for Lorenz model

8/3, and initial state of (0,1,0).

=28.0, b

with parameters: 0=10.0, R

Point A corresponds to the local value of the exponent at the time

after which the future behavior of the system could not be predicted.
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